일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
- 포스코 채용
- KT
- classifier-free guidance
- 논문 리뷰
- 코딩테스트
- Generative Models
- 프로그래머스
- ip-adapter
- ddim
- posco 채용
- 과제형 코딩테스트
- Image Generation
- diffusion models
- colorization
- manganinja
- DDPM
- stable diffusion
- controlNet
- kt인적성
- 포스코 코딩테스트
- dp
- Today
- Total
목록stable diffusion (2)
Paul's Grit

https://arxiv.org/abs/2501.08332 MangaNinja: Line Art Colorization with Precise Reference FollowingDerived from diffusion models, MangaNinjia specializes in the task of reference-guided line art colorization. We incorporate two thoughtful designs to ensure precise character detail transcription, including a patch shuffling module to facilitate corresponarxiv.org Abstactdiffusion models에서 파생된 Man..

https://arxiv.org/abs/2302.05543 Adding Conditional Control to Text-to-Image Diffusion ModelsWe present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers prarxiv.org Abstract대규모 사전학습된 텍스트-이미지 diffusion 모델..