일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
- 논문 리뷰
- ddim
- ip-adapter
- posco 채용
- 포스코 코딩테스트
- 코딩테스트
- 포스코 채용
- KT
- colorization
- controlNet
- DDPM
- manganinja
- diffusion models
- 과제형 코딩테스트
- Generative Models
- kt인적성
- classifier-free guidance
- 프로그래머스
- stable diffusion
- dp
- Image Generation
- Today
- Total
목록Generative Models (3)
Paul's Grit

https://arxiv.org/abs/2501.08332 MangaNinja: Line Art Colorization with Precise Reference FollowingDerived from diffusion models, MangaNinjia specializes in the task of reference-guided line art colorization. We incorporate two thoughtful designs to ensure precise character detail transcription, including a patch shuffling module to facilitate corresponarxiv.org Abstactdiffusion models에서 파생된 Man..

https://arxiv.org/abs/2308.06721 IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion ModelsRecent years have witnessed the strong power of large text-to-image diffusion models for the impressive generative capability to create high-fidelity images. However, it is very tricky to generate desired images using only text prompt as it often involvesarxiv.org Abstract최근 몇 년 동..

https://arxiv.org/abs/2302.05543 Adding Conditional Control to Text-to-Image Diffusion ModelsWe present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers prarxiv.org Abstract대규모 사전학습된 텍스트-이미지 diffusion 모델..